Nonlinear Parametric Model Identification with Genetic Algorithms. Application to a Thermal Process
نویسندگان
چکیده
One of the first steps taken in any technological area is building a mathematical model. In fact, in the case of process control, modelling is a crucial aspect that influences quality control. Building a nonlinear model is a traditional problem. This paper illustrates how to built an accurate nonlinear model combining first principle modelling and a parametric identification, using Genetic Algorithms. All the experiments presented in this paper are designed for a thermal process.
منابع مشابه
Nonlinear Parametric Identification of an IPMC Actuator Model
Ionic polymer metal composite is a class of electro-active polymers which are very attractive smart actuators due to its large bending deflection, high mechanical flexibility, low excitation voltage, low density, and ease of fabrication. These properties make IPMC a proper candidate for many applications in various fields such as robotics, aerospace, biomedicine, etc. Although the actuation beh...
متن کاملSolving a Stochastic Cellular Manufacturing Model by Using Genetic Algorithms
This paper presents a mathematical model for designing cellular manufacturing systems (CMSs) solved by genetic algorithms. This model assumes a dynamic production, a stochastic demand, routing flexibility, and machine flexibility. CMS is an application of group technology (GT) for clustering parts and machines by means of their operational and / or apparent form similarity in different aspects ...
متن کاملNonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملFunctional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملNonlinear Robust Identification with −GA: FPS Under Several Norms Simultaneously
In nonlinear robust identification context, a process model is represented by a nominal model and possible deviations. With parametric models this process model can be expressed as the so-called Feasible Parameter Set (FPS), which derives from the minimization of identification error specific norms. In this work, several norms are used simultaneously to obtain the FPS. This fact improves the mo...
متن کامل